Satellite Liaison Blog

GOES-R & JPSS: The Future of Weather Satellites

  • Home
  • About the Blog

GOES-18 Captures Fires and Severe Thunderstorms

Posted by Bill Line on 05/12/2022
Posted in: Uncategorized. Leave a comment

GOES-18 data is preliminary and non-operational.

GOES-18 captured intense wildfires and widespread severe thunderstorms across the central US on 11 May 2022. GOES-18 mesoscale sector 2 was positioned over the southern high plains, encompassing large wildfires in New Mexico, and thunderstorm development in west Texas. A GOES-18 VIS/SWIR combo animations displays the large wildfire hot spots and associated smoke plumes, along with connective initiation along the west Texas dryline.

11 May 2022 GOES-18 1-min VIS/SWIR combo over southern high plains

In fact, GOES-16 and GOES-17 also had mesoscale sectors positioned over that location, allowing for a comparison between the three. GOES-18 imagery appears very similar to that from GOES-16 and GOES-17, as it should, aside from parallax differences due to the varied viewing angles between the three satellites.

11 May 2022 GOES-17 (top), GOES-18 (middle), GOES-16 (bottom) VIS/SWIR combo over southern high plains

Focusing east on the thunderstorms along the dryline, 1-min 500-m visible imagery provides excellent detail into convective initiation and storm top features.

11 May 2022 GOES-18 VIS over southern high plains, storm-relative

Combining the VIs (Ch02) channel with NIR (Ch05) and IR (Ch13) channels, we get the popular Day Cloud Phase Distinction RGB from GOES-18. The multispectral product provides information about storm top glaciation and cooling, indicators of convective initiation, that are not apparent in a single channel alone.

11 May 2022 GOES-18 Day Cloud Phase Distinction RGB over southern high plains

Focusing further north in Kansas, the details of a rapidly development thunderstorm are revealed in a rocking animation of GOES-18 1-min VIS.

11 May 2022 GOES-18 VIS over Kansas, storm-relative rocking animation

Severe thunderstorms also developed across the upper midwest, where another GOES-18 mesoscale sector was positioned. This time, we observe storm top characteristics, such as overshooting tops and above anvil cirrus plumes, along with additional convective development and decay, using the GOES-18 VIS-IR sandwich combo imagery.

11 May 2022 GOES-18 VIS/IR combo over upper midwest, storm-relative

GOES-18 CONUS sector (5-min) IR imagery shows the longer-period evolution of the severe convection across the upper midwest from the 11th through the morning of the 12th.

11-12 May 2022 GOES-18 10.3 um IR imagery

Zooming way out, we get a full disk view of GOES-18 UL WV imagery from last night through this morning.

12 May 2022 GOES-18 6.2 um water vapor imagery

Comparing water vapor imagery from the three GOES-R series satellites, we see that while GOES-17 WV imagery suffers from the Cooling System issue at times, corresponding GOES-16 and GOES-18 imagery appears great! GOES-18 is scheduled to begin it’s drift west to the GOES-West position in a few days, and eventually will become the operational GOES-West satellite early next year.

12 May 2022 GOES-17 (left), GOES-18 (middle), GOES-16 (right) 6.2 um water vapor imagery.

Bill Line, NESDIS and CIRA

First Light GOES-18 Imagery

Posted by Bill Line on 05/12/2022
Posted in: Uncategorized. Leave a comment

GOES-18 images and animations in this blog post are considered preliminary and non-operational.

On 11 May 2020, NESDIS released an “Earth From Orbit” GOES-18 Advanced Baseline Imager (ABI) first light video and associated article, which can be found here. The images and animations included in the video are some of the first captured by the GOES-18 ABI, including imagery from 5-8 May 2022. This blog post includes several of the animations from the video such that they can be viewed individually and with context. Included are an array of 10-min full disk, 5-min CONUS, and 1-min Mesoscale sector imagery. Additional animations and images from the first light video can be found in this blog post from CIMSS. Be sure to view the 1080p version of the videos!

First, a full disk Geocolor imagery from the day on the 5 May 2022, capturing the full hemisphere from the satellite currently at the 89.5W degree longitude position. The satellite is scheduled to begin drifting west toward the 136.8W position, near GOES-West, on May 16, arriving on June 6. A full schedule of the GOES-West transition can be found here.

5 May 2022 GOES-18 Full-Disk Geocolor Imagery.

Most of the first light imagery included in the video is from May 5, when a variety of active weather occurred across the US. GOES-18 provided incredible images of severe thunderstorms developing from Texas east into the southern MS valley area. First, GOES-18 upper-level water vapor imagery reveals the upper level features responsible for the development of widespread convection.

5 May 2022 GOES-East CONUS sector 5-min Channel 8 (upper-level) water vapor imagery.

GOES-18 visible and IR satellite imagery captured important storm top details, such as overshooting tops and above anvil cirrus plumes, in addition to cumulus cloud evolution, convective initiation and decay, and boundary movement.

5 May 2022 GOES-18 CONUS sector 5-min channel 13 (clean window) IR imagery.
5 May 2022 GOES-18 Mesoscale sector 1-min channel 2 (red) visible imagery over ArkLaTex region, with NWS severe thunderstorm and tornado warning polygons.
5 May 2022 GOES-18 Mesoscale sector 1-min channel 2 (red) visible imagery over southeast Texas, storm relative.

Further east, GOES-18 Geocolor imagery captured wildfire smoke over Florida, along with cumulus cloud development and eventual convective initiation.

5 May 2022 GOES-18 CONUS sector 5-min Geocolor imagery over south Florida.

Elsewhere on the 5th, GOES-18 Geocolor imagery revealed cu streaming across the Yucatan Peninsula, and stratus clouds sloshing along the Chile coast.

5 May 2022 GOES-18 CONUS sector 5-min Geocolor Imagery over Yucatan Peninsula.
5 May 2022 GOES-18 Full Disk sector 10-min Geocolor Imagery over Chile coast.

On 8 May 2022, critical fire weather conditions across the southwest resulted in ongoing wildfires across New Mexico to grow and generate large smoke plumes, which were captured in detail by GOES-18 Geocolor imagery. Also evident in the imagery is a dense region of blowing dust coming out of northwest New Mexico.

8 May 2022 GOES-18 Mesoscale sector 1-min Geocolor imagery over New Mexico wildfires and blowing dust.

Bill Line, NESDIS/STAR. Non-Geocolor Imagery created in AWIPS.

Geocolor Imagery created by Dan Lindsey (GOES-R), Curtis Seaman (CIRA), and Dakota Smith (CIRA).

Thanks to Natalie Tourville (CIRA) for managing GOES-18 dataflow to CIRA, and to many many others for making GOES-18 ABI possible!.

8 May 2022 Blowing Dust

Posted by Bill Line on 05/09/2022
Posted in: Uncategorized. Leave a comment

A broad upper trough digging across the western US and associated 60+ knot mid-level jet yielded gusty winds and low RH across a broad portion of the southwest US on Sunday. Not only did widespread critical fire weather conditions exist, but numerous areas of blowing dust developed during the day amidst winds gusting over 50 mph at the surface. GOES Water Vapor imagery with RAP analysis fields captures the evolution of the system on Sunday (Fig 1). Downward momentum transfer across the southwest can be visualized in the WV imagery as darkening/warming (drying). Further, the tightening pressure gradient is apparent in the RAP MSLP field. Both GOES-West Mesoscale sectors were positioned across the Southwest to capture the blowing dust and wildfire threat.

Figure 1: 8 May 2022 GOES-East UL WV Imagery, 500 mb height (white contour) and wind speed (Color contour), and sfc MSLP.

A broad view from GOES-East Geocolor and IR SWD imagery during the afternoon provides a nice overview of the event (Fig 2 and 3). Blowing dust developed across soCA, NV, AZ, NM, CO, and wTx, with impressive smoke plumes also coming out of New Mexico and Arizona. Quite a few NWS Dust Storm Warnings were issued across the Southwest during the day, highlighting locations where blowing dust was restricting visibility considerably. As has been noted in past posts, these warning polygons are typically issued and shaped with some combination of, depending on availability, surface obs, webcams, other visual, satellite imagery. Satellite imagery was utilized by NWS offices in the issuance of the Dust Storm Warnings, discussion of the forecast in Area Forecast Discussions, and on Social Media, by impacted NWS offices.

Figure 2: 8 May 2022 GOES-East 5-min Geocolor+SWIR imagery, NWS Dust Storm Warning polygons. GIF
Figure 3: 8 May 2022 GOES-East 5-min Split Window Difference Imagery, NWS Dust Storm Warning polygons.

Focusing on early blowing dust in New Mexico, NWS Albuquerque noted in an AFD at 2059 UTC: “A prominent dust plume is already evident on RGB satellite imagery over San Juan county where a Dust Storm Warning has been issued, and subsequent statements will likely follow.” The Dust Storm Warning, issued earlier at 1826 UTC, mentions Satellite imagery as the source of the warning. The NWS ABQ Twitter account communicated the location of the hazard using GOES Dust RGB imagery. One-minute Geocolor (Fig 4) and Dust RGB (Fig 5) imagery capture the blowing dust and smoke plumes in detail.

Figure 4: 8 May 2022 GOES-West 1-min Geocolor + SWIR Imagery, NWS Dust Storm Warning Polygons. GIF
Figure 5: 8 May 2022 GOES-West 1-min Dust RGB Imagery, NWS Dust Storm Warning Polygons. GIF

Further West NWS Las Vegas issued numerous Dust Storm Warnings across their CWA, with one reading: “At 417 PM PDT, dust channel moving across Death Valley Road near Dumont Dunes continues to be impressive on satellite imagery and is likely producing less than a quarter mile visibility.” By later in the afternoon, while dust could be diagnosed in GOES-West visible imagery (such as Geocolor), the lack of forward scattering from this location during the afternoon toward GOES-West makes it more difficult, compared to from GOES-East (Fig 6).

Figure 6: 8 May 2022 GOES-West 1-min Geocolor Imagery, NWS Dust Storm Warning Polygons. GIF

Therefore, bringing in IR-based products, such as SWD, to enhance dust appearance in the imagery is recommended (Fig 7), and/or viewing the IR-based RGBs (Fig 8).

Figure 7: 8 May 2022 GOES-West 1-min Geocolor Imagery, SWD overlay, NWS Dust Storm Warning Polygons. GIF
Figure 8: 8 May 2022 GOES-West 1-min Geocolor Imagery, Dust 2 RGB, NWS Dust Storm Warning Polygons. GIF

Additional mentions of satellite imagery in AFDs for dust detection during this event included:

From NWS Phoenix, AZ at 2132 UTC: “Meanwhile, further west across the Imperial Valley blowing dust has already been detected on visible satellite imagery and local web cams, and this threat will continue into this evening.”

From NWS Reno, NV at 2133 UTC: “For now, we will keep an eye on gusts of 60-70 mph with wind prone areas possibly gusting to 80+ mph. Driving along N-S oriented roads such as US 395 and US 95 will be difficult for high-profile vehicles through the afternoon. Blowing dust is visible on satellite imagery near Lovelock, and this is likely to persist throughout Monday.”

From NWS Pueblo, CO at 2315 UTC: “Satellite imagery depicts a narrow channel of dust extending from northwest New Mexico northeastward into south-central Colorado. While much of this dust in southern Colorado appears to be concentrated aloft, surface visibilities have been lowering across the San Luis Valley, and may continue to fall this evening as additional dust is transported into the region. As a result, a Blowing Dust Advisory has been issued for the San Luis Valley, in addition to the eastern San Juan Mountains — specifically applying to southern areas of the mountains close to the Colorado-New Mexico border.”

Additional examples of NWS offices communicating the blowing dust hazard using satellite imagery from NWS Grand Junction, CO (DEBRA Dust) and El Paso, TX (Geocolor) are shown below.

Satellite imagery is showing a decent plume of dust heading into the southeast San Juan range as winds gusts in the 45 to 65 mph range. #cowx pic.twitter.com/4XFNzec8eg

— NWS Grand Junction (@NWSGJT) May 8, 2022

6:30 pm: A look at satellite imagery this evening quickly shows the impact the strong winds have on the Borderland, bringing in smoke from a fire in AZ, and lofting dust and gypsum (from White Stands). #txwx #NMwx pic.twitter.com/FroamUY3JT

— NWS El Paso (@NWSElPaso) May 9, 2022

Bill Line, NESDIS and CIRA

Oklahoma Supercells at Sunset from GOES-16

Posted by Kevin Thiel (CIWRO) on 04/26/2022
Posted in: Day Cloud Phase Distinction RGB, G16-CH13_10.3_IR-Clean, GLM, RGB, SPC, Tornado. Leave a comment

Supercells were expected to initiate along a dryline in west-central Oklahoma during Saturday evening on April 23rd. The Storm Prediction Center had issued a slight risk of severe storms in their 1630 Z (1:30 PM CDT) outlook, with the risk tornadoes (5%), damaging hail (15%), and damaging wind (15%). Thunderstorms initiated around 2200 Z (5:00 PM CDT) as shown from the Day Cloud Phase Distinction RGB animation below. As the sun began to set near the end of the animation, decreasing contributions from the green (Channel 2, visible) and blue (Channel 5, near-IR) bands created a shift to more red colors in the imagery (Channel 13, clean-IR).

Animation of the Day Cloud Phase Distinction RGB from 2130 to 2300 Z (4:30-6:00 PM CDT).

An SPC Mesoscale Discussion and Tornado Watch, along with NWS Norman Public Information Graphics show the transition from the initial SPC Convective Outlook to the warnings that would later be issued that evening. (Images below in chronological order)

As convection matured into supercells after sundown, satellite imagery became confined to the infrared bands (Channels 7-16), with Clean-IR imagery most often used. Additionally, rapidly updating (1 minute) lightning data from the GLM Flash Extent Density product can provide information about thunderstorm trends between NEXRAD full-volume scans (4-5 minute updates). At night, the GOES-16 GLM detection efficiency often exceeds 90% across the south-central United States.

Intensification of two supercells and tightening of their low level mesocyclones, southwest of Oklahoma City and southwest of Stillwater, as indicated by radar prompted the NWS Norman office to issue tornado warnings for both storms. The Tornado Warning for the Stillwater supercell was issued at 2359 Z (6:59 PM CDT), and the Tornado Warning for the Oklahoma City supercell was issued at 0003 Z (7:03 PM CDT).

5-minute ABI and GLM data from 2330 to 0030 Z (6:30 – 7:30 PM CDT)
Left: GLM Flash Extent Density (5 minute total) overlaid on the ABI Clean-IR band.
Right: ABI Clean-IR Band.

The animation above is from 2330 Z to 0030 Z (5 minute intervals), and shows how both storms intensified from the perspective of the GLM FED and ABI Clean-IR products. Deep overshooting tops were observed from the ABI along with notable increases in GLM flash rates. In this scenario satellite information may have provided a ‘heads-up’ on which storms to monitor, along with additional confirmation of trends observed from NEXRAD.

One-minute data was observed from the GOES-East Mesoscale Domain for both products (below). In this scenario NWS Norman also had access to the Terminal Doppler Weather Radar at the Oklahoma City Airport (TOKC), providing 1-minute radar reflectivity and doppler velocity data within the vicinity of the airport. For the supercell near Oklahoma City, this may make a forecaster less reliant on one-minute satellite data when making warning decisions. However, for the storm southwest of Stillwater no TDWR data was available. The rapid increase in lightning flash rates identified by the GLM FED product for this storm can provide additional verification for an NWS forecaster that the updraft was intensifying, and tightening of the low level mesocyclone prior to tornadogenesis may be imminent.

1-minute data from the GOES-East ABI (Clean-IR) and GLM (FED) within the mesoscale domain. Imagery is from 2350 – 0010 Z (6:50-7:10 PM CDT) (Click animation to view at full size)

Kevin Thiel (OU CIWRO)

Dense Fog in Ohio Viewed from the Nighttime Microphysics RGB

Posted by Kevin Thiel (CIWRO) on 04/22/2022
Posted in: Nighttime Microphysics RGB, RGB. Leave a comment

During the early morning hours of April 22nd, fog began to form across southern Ohio, West Virginia, and Pennsylvania. In anticipation of the fog, the NWS Weather Forecast Office in Wilmington OH issued a Dense Fog Advisory for a portion of their forecast area.

Latest guidance increases confidence in development of areas of dense fog late tonight. Based on this, have hoisted Dense Fog Advisory south of Interstate 71.

NWS ILN, AFD Issued at 0133 UTC (9:33 EDT)

pic.twitter.com/BbwYSueh93

— NWS Wilmington OH (@NWSILN) April 22, 2022

Confirmation of the dense fog can be observed via satellite from the Nighttime Microphysics RGB starting around 0500 Z (1:00 AM EDT), with greater contributions from the Green Band (10.3 um – 3.9 um band difference) and minor contributions from the Blue Band (10.3 um band). The stationary, more faint, and highly localized appearance of the fog stands in contrast to the low level clouds in southwest Pennsylvania and central West Virginia, which often have a similar color due to similarities in their composition. Additionally the movement of cirrus and stratocumulus clouds into the area, from precipitation over Indiana, did obscure the extent of the fog in western Ohio by 1000 Z (6:00 AM EDT). This is one limitation of the product, as skies have to be fairly clear in order to properly identify fog.

Based on surface observations and imagery from the Nighttime Microphysics RGB, it was apparent by 0830 Z (4:30 AM EDT) that the dense fog was expanding north of Interstate 71. This confirms NWS Wilmington expanding the Dense Fog Advisory north into the Cincinnati and Dayton metro areas, prior to the increase of traffic during the morning rush. In this case the combination of surface observations and the Nighttime Microphysics RGB can provide confirmation of developing fog and its spread overnight for the Dense Fog Advisory. Using satellite RGBs in tandem with other observations can help maximize situational awareness, especially when satellite data cannot be relied on exclusively as shown in this example.

The fog is becoming dense in many locations across northern KY, southern Ohio, and southeast Indiana. Have expanded the dense fog advisory north to about I-70.

NWS ILN, AFD Issued at 0831 Z (4:31 AM EDT).

[12:56 AM] The dense fog advisory has been expanded northwest to include most of the Cincinnati metro. Areas of reduced visibilities are likely into the morning rush.

— NWS Wilmington OH (@NWSILN) April 22, 2022

Dense fog has developed across much of the area especially along and south of I-70. Fog will likely persist into the first part of the morning commute. Watch for low visibilities while driving. Image credit: OH DOT. pic.twitter.com/DAe4J4Ngst

— NWS Wilmington OH (@NWSILN) April 22, 2022

Kevin Thiel (OU CIWRO)

Thunderstorms Initiating Overnight in Kansas and Oklahoma

Posted by Kevin Thiel (CIWRO) on 04/13/2022
Posted in: G16-CH13_10.3_IR-Clean, Nighttime Microphysics RGB, RGB. Leave a comment

During the late evening hours on April 12th, 2022, convection initiated along a retreating dryline and advancing cold front in southern Nebraska and central Kansas. Initiation across the line can be observed from the Clean-IR band (Ch 13) from GOES-16 and the NEXRAD mosaic below. The near-uniform initiation of these thunderstorms along the dryline provided a unique example of how GOES imagery can be combined with radar data to monitor rapid thunderstorm development and dissipation.

Additionally, the initiation and subsequent outflow boundary along the leading edge of the front produced an undular bore, which traveled across central Oklahoma from 0600 Z to 1000 Z and initiated convection just after 1030 Z. Tracking the bore/front in this scenario could have been done by the Clean-IR band or radar (as seen below). However, the Nighttime Microphysics RGB can provide additional information not observed from a single ABI band or from radar.

Strong contributions from the Green band (Ch 13 – Ch 7) and moderate contributions from the Red band (Ch 15 – Ch 13) in the RGB recipe make the green-yellow clouds formed along the bore stand out from the magenta surface. Early signs of initiation along from the front can also be observed from strong contributions by both the Red and Green band, with low contributions from the Blue band (Ch 13), and the development of stratus clouds in central and eastern Oklahoma indicate an environment with greater low level moisture. In this scenario, the Nighttime Microphysics can provide an early ‘heads up’ that CI may be coming soon as the front moves into a more favorable environment for severe weather in southeast Oklahoma, southwest Arkansas, and northeast Texas. This coincides with the SPC Mesoscale Discussion issued just after 1200 Z.

Kevin Thiel (OU CIWRO)

Early April 2022 Blowing Dust

Posted by Bill Line on 04/11/2022
Posted in: Uncategorized. Leave a comment

An active weather pattern involving a persistent mid-level jet over US high plains resulting in several days of widespread hazardous blowing dust. As has been captured previously on this blog, NWS offices leverage satellite imagery to detect and track blowing dust, specifically for diagnosing the spatial extent of blowing dust, which is important for the issuance of advisories and warnings, and for including blowing dust in forecast grids. Further, satellite imagery is used to communicate the threat to the public via social media, as well as to partners in decision support service briefings. NWS Area Forecast Discussions provide some insight into how blowing dust appearance in satellite imagery influences forecaster thinking and decision making. This blog post captures some of these applications from 06-07 April 2022.

GOES-East water vapor imagery from 6-7 April capture a very broad upper low meandering over the upper mid-west (Fig 1). It’s western periphery over the high plains resulted in considerable northwesterly upper flow across the region, along with the embedded periodic and subtle shortwaves.

Figure 1: 06-07 April 2022 GOES-East Ul Water Vapor Imagery

Gusty winds developed early in the day on the 6th, resulting in morning blowing dust and associated considerations by impacted NWS offices:

From NWS Cheyenne, WY at 1609 UTC: Only minor forecast change is related to blowing dust. Latest satellite observations has indicated a few isolated patches of blowing dust in the southern Nebraska Panhandle near Sidney. Nearby locations across central NE and eastern CO have reported areas of blowing dust. Updated the forecast to include patchy blowing dust through the afternoon which could locally reduce visibility at times.

From NWS Goodland, KS at 1600 UTC: Widespread dust developing across the area now. A couple distinct larger areas are showing themselves on satellite… For the moment, issued a blowing dust advisory for the locations of the bigger plumes. However, it’s quite possible that warnings will be needed soon as we’re starting to get a few reports of near zero visibility. And then 1624 UTC: Went ahead with blowing dust warning across SW Nebraska and a large portion of NW Kansas. Started getting several reports of
zero visibility and decided an upgrade to a warning was necessary. Expanded the advisory to include Graham and Norton counties as dust being observed both at Norton AWOS (7 miles) and satellite.

From Dodge City, KS at 1650 UTC: Up to 50-60 mph likely for much of the CWA during peak heating of the afternoon with temperatures in the upper 50s to near 60 degrees. Blowing dust during this time will be an issue as already seen on satellite for western counties in the driest ground conditions.

From NWS Pueblo, CO at 1655 UTC: Blowing Dust Satellite products are showing blowing dust occurring over the far eastern plains, so a blowing dust advisory has been issued until late afternoon for the far eastern counties.

From NWS Boulder, CO at 1710 UTC: The second change was to add in additional blowing dust into the
far northeastern corner of the state. Webcams and surface observations have indicated some areas of reduced visibility due to blowing dust. CIRA’s DEBRA dust product also shows blowing dust has increased quite a bit over the past couple of hours. Have joined our neighbors to the east with a Blowing Dust Advisory for Sedgwick and Phillips counties where dust could impact travel.

As for DSS and social media, NWS Goodland analyzed GOES-East DEBRA Dust imagery in a morning web briefing posted to social media. NWS Dodge City highlighted problem areas in GOES-East Dust RGB imagery in early day social media posts.

NWS offices were confirmed to have used the CIRA DEBRA Dust product (available on CIRA Slider and in some NWS office AWIPS), as well as the AWIPS Dust RGB, shown in Figures 2 and 3, respectively.

Figure 2: 06 April 2022 GOES-East DEBRA Dust Imagery.
Figure 3: 06 April 2022 GOES-East Dust RGB Imagery.

One can also easily diagnose the blowing dust in the simple Split Window Difference with grayscale colormap, as regions of relative dark gray to black (Fig 4). The Split Window Difference is a key ingredient to satellite-based blowing dust detection products.

Figure 4: 06 April 2022 GOES-East Split Window Difference Imagery.

Geocolor imagery with blowing dust highlighted by the SWD is shown in Fig 5, which also overlays wildfires via the Fire/Hot Spot product. Finally, an experimental Blowing Dust RGB highlights lofted dust as dull to bright yellow (Fig 6).

Figure 5: 06 April 2022 GOES-East Geocolor+SWD Imagery.
Figure 6: 06 April 2022 GOES-East experimental Blowing Dust RGB Imagery.

On the 7th, with the same pattern in place, blowing dust developed across much of the same area, again early in the day. One-minute satellite imagery was available to forecasters to help analyze early development of blowing dust

From NWS Goodland, KS at 1513 UTC: Satellite is already indicating dust plumes developing across
portions of the area. The first area is between Sterling, CO, Akron, CO, and Wray, CO with 4 mile visibility already being reported in Yuma, CO. The other area of dust is south of Burlington, CO extending southeast towards Tribune, KS. Decided it was necessary to extend the blowing dust advisory across the rest of the forecast area as a result of the dust plumes viewable on satellite as well as observations. Will be monitoring for and looking for reports of near zero visibility and that will determine if Blowing Dust Warnings are needed once again. And at 1724 UTC: Received a couple reports of near zero visibility, and along with the impressive dust plume observed on satellite imagery, was pushed over the edge to issue the blowing dust warning for eastern Colorado (Yuma, Kit Carson, and Cheyenne Counties) and extreme northwestern Kansas (Cheyenne, Sherman, Wallace, and Greeley counties). This is currently the most impressive signal we’ve seen so far.

From NWS Boulder, CO at 1520 UTC: Blowing dust will be an additional hazard through the afternoon, and current satellite imagery depicts a few dust plumes beginning to surface over Washington County. May consider Blowing Dust Advisories down the line depending on how widespread/persistent the blowing dust looks to be.

A blowing dust advisory was eventually issued for Washington County.

From NWS Hastings, NE at 1544 UTC: The Blowing Dust Advisory has been extended to include more of the forecast area today. This is due in part to expected potential strong winds and suggestions of dust showing up on satellite imagery.

From NWS Pueblo, CO at 1726 UTC: Updated to issue a Dust Advisory for the far Eastern Plains
through this afternoon. Satellite imagery indicates widespread blowing dust moving into the far Eastern Plains.

On social media, NWS offices communicated the blowing dust threat with satellite imagery, including these posts from Goodland, Hastings, Pueblo, and Boulder. Various NWS personnel have commented that DEBRA Dust is a preferred product for public-sharing (blowing dust information) given it’s easy-to-understand nature.

DEBRA Dust imagery for the full day again captured the lofted dust quite well (Fig 7).

Figure 7: 07 April 2022 GOES-East DEBRA Dust Imagery.

Focusing on 1-min imagery over E CO and W KS during the morning, we can analyze the period of blowing dust initiation in detail. The grayscale Split Window Difference can sometimes be difficult to interpret on such fine scales (Fig 8).

Figure 8: 07 April 2022 GOES-East 1-min Split Window Difference Imagery.

Geocolor (and other reflectance imagery) from GOES-East will not highlight lofted dust and other aerosols too well from GOES-East in the morning due to lack of forward scattering (Fig 9). Enhancing the imagery with Split Window Difference helps (Fig 10).

Figure 9: 07 April 2022 GOES-East 1-min Geocolor Imagery.
Figure 10: 07 April 2022 GOES-East 1-min Geocolor+SWD Imagery.

During this time of day from GOES-East, and especially when clouds are present, IR-based products might be best for blowing dust detection, such as with the experimental blowing dust RGB (Fig 11) or traditional Dust RGB.

Figure 11: 07 April 2022 GOES-East 1-min experimental Blowing Dust RGB Imagery.

Viewing the 10-min GOES-West Geocolor, we see how forward scattering helps produce the dust signal in reflectance-based imagery.

Figure 12: 07 April 2022 GOES-West 10-min Geocolor Imagery.

Bill Line, NESDIS and CIRA

GOES-East and VIIRS Capture Frontal Passage

Posted by Bill Line on 04/07/2022
Posted in: Uncategorized. Leave a comment

A potent jet streak overhead resulted in strong/gusty winds across the high plains on 5 April 2022. The wind combined with dry conditions, resulted in a broad area of elevated to critical fire weather conditions. Further, a shortwave trough rounding the base of a broader upper low to the north sent a cold front south through the high plains, resulting in dramatic wind shifts along it’s path. NWS Dodge City, KS summarized the situation well leveraging GOES water vapor imagery (Fig 1): “Water vapor imagery shows a strong upper level jet moving into the Pacific Northwest and northern Rockies overnight with an upper low starting to close off along the border of Montana and Canada. This low will move out across the Dakotas into Minnesota today into tonight. A cold front will move south across western Kansas today…”

Figure 1: 05 April 2022 GOES-East UL WV Imagery, RAP 500 mb height contours (white), and 500 mb wind speed contours (color) depicting upper jet streak.

A large wildfire developed in the Oklahoma Panhandle early in the day within gusty westerly winds, but abruptly spread south with the passage of a cold front. An AWIPS procedure captured all aspects of this situation, and is shown in Figure 2. Using the Geocolor as the base layer, we overlay the 10.3 um channel with 10% transparency and a white/cold to black/warm grayscale colormap centered on the brightness temperature range of the pre and post frontal clear sky, and 3.9 um shortwave IR brightness temperature >45 C to capture hot spots. The first part of the animation captures the wildfire hot spot and smoke plume as the cold front approaches. Once the cold front and associated wind shift push through the fire, the hot spot quickly begins to move south, along with the low-level portion of the smoke plume. The shallow nature of the cold airmass is apparent in the smoke plume behavior, with only the low-level portion nearest the fire falling within northerly flow, while further aloft, the plume continues to drift east within the westerly flow.

Figure 2: 5 April 2022 GOES-East 1-min GOES-East Geocolor, semi-transparent IRW, hot SWIR.

The location of the wildfire fell within three consecutive VIIRS passes around the time of the frontal passage, allowing for a detailed (spatially) view of the fire and wind shift. The VIIRS Natural Fire Color RGB with a similarly semi-transparent VIIRS LWIR channel overlay is shown in Fig 3.

Figure 3: 5 April 2022 VIIRS Natural Fire Color RGB, semi-transparent 10.3 um LWIR.

While surface obs provide the ideal source of quantitative information regarding wind shifts, satellite imagery (especially 1-min as in Fig 2) can be leveraged to analyze frontal movement and associated wind shift with more spatial and temporal detail. In cases of wind shifts at a wildfire, such real-time information is extremely important in the protection of life and property, both for the local public and for emergency personnel working the fire (see example from one year ago here).

For this event, NWS Amarillo, TX (AMA) leveraged GOES Imagery and products in order to illustrate the dramatic fire growth associated with the frontal passage on social media (see post below). NWS/AMA also utilized satellite imagery for their Decision Support Services (DSS) phone briefings supporting the Beaver County fire and other fires in the area. Specifically, the GOES 1-min satellite imagery allowed forecasters to track the front in detail and communicate to emergency personnel the precise timing of the impending change in wind direction at each fire. The Beaver County EM confirmed that they moved personnel based on the NWS briefings of the frontal passage timing, which they got directly from watching the 3.9 um satellite imagery. In particular, forecasters noted their use of the 1-min 3.9 um band (which captured the frontal position and hot spots well) with the Fire/Hot Spot derived product (Fire Temperature) as an overlay (See Figure 4 for grayscale version and wide view of area).

4/5 @ 5PM: Here's a quick look at the ongoing fire up in Beaver County, OK. The video starts just before the front reaches the fire and ends about 1.5 to 2 hrs after the frontal passage. The fire has grown significantly. Stay safe and do what you can to prevent fires. #phwx pic.twitter.com/bqDDkQZmkt

— NWS Amarillo (@NWSAmarillo) April 5, 2022
Figure 4: 4 April 2022 GOES-East SWIR (grayscale, darker is hotter), Fire Temperature derived product (colorscale).

Bill Line, NESDIS and CIRA

Input from NWS/AMA, including Melissa Beat

Bolt from the Blue: How Satellites Tell the Tale of Aircraft Dodging Developing Thunderstorms

Posted by Joseph Patton on 04/06/2022
Posted in: GLM. Leave a comment

Thunderstorms and their associated severe winds have a long history of impacting aircraft. Many tragic incidents demonstrate how avoiding the turbulent updrafts and downdrafts within thunderstorms is paramount to protect the aircraft and ensure the safety of the passengers and crew. Convective activity can significantly alter flight paths for both commercial and general aviation. Airlines incur costs in the tens of millions of dollars each year in extra fuel, diversions, and labor costs to manage thunderstorm-related impacts and delays. This case study uses GOES-R series satellite imagery to examine severe weather and its relationship with the resultant flight paths of nearby aircraft.

In mid-May 2019, a strong upper-level trough was present over the western United States, advecting positive potential vorticity over the Central High Plains and the upper Great Plains (Fig. 1). Upper-level support for ascent was combined with low-level support in the form of a developing leeside surface cyclone advancing northeastward across northeast Colorado and into northwest Kansas and southwest Nebraska. A mesoscale dry line front developed along the downslope terrain of eastern Colorado and western Kansas, providing strong localized support for convective initiation coupled with thermodynamic atmospheric parameters supportive of further convective development. This eventually resulted in thunderstorms and severe weather in the form of tornadoes, large hail, and damaging winds.

Fig. 1: CONUS imagery from GOES-16 of the Channel-9 Water Vapor imagery from the Central United States. A dry line front is clearly visible as drier air (yellow shades) advancing eastward through eastern Colorado.

The National Centers for Environmental Prediction (NCEP) Central Operations stewards a meteorological observational archived database called the Meteorological Assimilation Data Ingest System, or MADIS. MADIS incorporates data from a wide variety of sources, including international, federal, state, and local agencies, universities, volunteer networks, and the private sector. Part of this private sector data included within MADIS is the location, time, heading, and altitude for registered aircraft within US airspace reporting via the Aircraft Communications Addressing and Reporting System (ACARS). Aircraft data from MADIS is encrypted such that flights specifics (i.e., tail number, aircraft operator, etc.) are not seen by the user, but the archived locations and headings of registered aircraft are available. While this dataset takes considerable care to develop into a GIS-friendly product, it can be a powerful tool to demonstrate the impacts weather has on aviation.

For this severe weather event, convective initiation was a core component of the forecast. Thunderstorms were expected to mature quickly as insipient updrafts were able to break through a relatively strong capping temperature inversion. The Geostationary Lightning Mapper (GLM) supplies valuable satellite confirmation of convective initiation by quickly highlighting the initial flashes and their spatial extent with gridded imagery. The GLM lightning observations pair well with GOES-16 ABI imagery, including the Day Cloud Phase Distinction RGB, which can highlight the development of ice and charge separation within clouds. Please note, the Day Microphysics RGB, which has notably different ingredients and recipe from the more familiar NWS AWIPS Day Cloud Phase Distinction RGB, but shares a similar purpose, is shown in this blog post. In this RGB and relevant to our discussion in this case, convective initiation can be diagnosed as cumulus clouds grow and transition from shades of tan/pale yellow to deeper red/orange.

From NWS Goodland at 1919 UTC: “GOES-16 Day-Cloud Phase Distinction imagery indicating a few failed attempts at thunderstorm initiation along dry line and with mesoscale data supporting ML inhibition between 50 in the south to 150 j/kg in the north. Will likely take another hour of insolation to further weaken capping, which will coincide with approaching pv anomaly from the west. Expect strong storms to fire between 2 and 3 pm MDT. Relatively high LCL’s and weak 0-1km shear support initial threats being very large hail greater than 2 inch and diameter. Tornado threat is somewhat low, but should increase as storms move east and north towards triple point near NE border and as LLJ increases around 6 PM.”

Overlaying the ACARS flight data with the GOES-16 Day Microphysics RGB during the early afternoon hours before initiation along the dry line near the Colorado/Kansas border shows a busy corridor of aviation traffic arriving at and departing from Denver International Airport (DEN) as well as many other busy regional airports in the area (Fig. 2). It is also apparent how planes are instructed to fly along arranged routes from point to point, and how those routes can be adjusted on the fly by weather. A considerable amount of traffic traveling across the domain appears to have taken off from and is destined for airports which are not displayed here. [The destinations and origins of the aircraft are not specified in this dataset available to the public.]

Fig. 2: Mesoscale Sector and CONUS imagery from GOES-16 of the Day Microphysics RGB from the Central High Plains in the time leading up to convective initiation. Overlaid is the Flash Extent Density gridded imagery from the GLM and the reported locations and headings from archived ACARS flights.

The failed attempts at convective initiation in the early afternoon as noted by NWS Goodland can be seen on the RGB imagery, and it finally gave way to thunderstorm activity around 2020 UTC. Just before the first lightning strikes are observed by the GLM, a distinct, robust turret confirming the presence of a building updraft can be seen in the RGB imagery just southwest of the GLD airport (Fig. 2). At the same time, more widespread red pixels, associated with an increasing amount of ice present at the top of the cloud, are shown in the RGB imagery just before lightning was first observed with this particular storm by the GLM.

After convection began in earnest along the dry line, it is clear that the rapidly developing weather conditions were having a significant impact on aviation by affecting the flight paths of hundreds of aircraft in this area. However, when looking at Channel-13 Longwave Infrared ABI imagery alone (Fig. 3), it is difficult to ascertain distinct trends in the flight paths of aircraft when compared to brightness temperatures at the top of the cloud. The gridded products from the GLM provide insights into the spatial extent of lightning with satellite-based lightning observations with 1-minute updates over much of the full disk of both GOES-East and GOES-West. The spatial extent of lightning can be investigated with the Flash Extent Density GLM gridded imagery through supercell development as in Figure 4.

Fig. 3: Mesoscale Sector and CONUS imagery of the Channel-13 Longwave IR ABI from GOES-16. Overlaid is the reported location and headings from archived ACARS flights.

The GLM provides unique observations of the spatial extent of lightning, and in this context demonstrates how aircraft are diverting around ongoing lightning flashes within thunderstorms as they are occurring. The convective cores of the thunderstorms can generally be identified by the more numerous flashes occurring within or near the updraft. Greater flash counts manifest as warmer colors in Flash Extent Density imagery, and vice versa. Due to the relatively low flash rates in this event, the standard color scale for Flash Extent Density may not always highlight convective cores.

Fig. 4: Mesoscale Sector and CONUS imagery from GOES-16 of the Day Microphysics RGB from the Central High Plains from before convective initiation through 00Z on 18 May 2019. Overlaid is the Flash Extent Density gridded imagery from the GLM and the reported locations and headings from archived ACARS flights.

Another GLM product which may provide additional value in identifying the location of rapidly evolving convective updrafts is Minimum Flash Area, which reports the area in square kilometers of the smallest lightning flash observed by the GLM within each pixel in the specified time window. In addition to being more numerous, flashes which are more associated with strengthening or mature updrafts are typically smaller in spatial extent. This occurs because of the large amount of charge separation taking place over a spatially small area within the vertically oriented updraft. Thus, Minimum Flash Area highlights these updrafts, with warmer colors indicating smaller minimum flash sizes, and vice versa. Minimum Flash Area alone can provide a significant amount of context for immediate impacts on not only aviation but also severe weather warnings and reports (Fig. 5).

Fig. 5: GOES-16 GLM Minimum Flash Area gridded imagery overlaid with NWS Severe Thunderstorm (yellow) and Tornado (red) warning polygons, CWSU SIGMET advisories (orange polygons), severe weather reports from the SPC archive (with similar symbol styling), and the reported locations and headings from archived ACARS flights. Note that there may be some spatial offset between the satellite-based GLM observations and ground-based observations approaching the edge of the field of view of the GLM; read more here.

Aircraft take a circuitous route on this day to avoid thunderstorm activity, if possible. Flash Extent Density alone may not necessarily give the full perspective on which lightning strikes pilots and air traffic control may be actively avoiding. Minimum Flash Area imagery provides additional context on which flashes are more likely associated with core convective updrafts and which are more likely associated with the anvil/stratiform regions by classifying flashes by the size of their spatial extent. In this imagery and in other cases, airplanes tend to more acutely avoid the more numerous, smaller flashes within the turbulent updrafts, and less so avoid the less frequent, larger, anvil/stratiform region flashes.

Incorporating the GLM gridded products of lightning observations into aviation forecasting operations can be a vital tool for meteorologists when spotting convective initiation and turbulent updrafts by classifying lightning flashes by their spatial extent. This additional information about convective activity can more precisely guide aviators through natural hazards such as thunderstorms, snow squalls, and other atmospheric phenomena.

Joseph Patton, CISESS

Differences in Stratus Cloud Color via the Nighttime Microphysics RGB

Posted by Kevin Thiel (CIWRO) on 04/06/2022
Posted in: Uncategorized. Leave a comment

One key advantage of the Nighttime Microphysics RGB is its ability to depict low-level cloud layers at night. These are marked by elevated red and green contributions within the RGB recipe, however a case from 6 April 2022 shows that not all low-level clouds look the same. Overnight a cold front was advancing southeastward through the central United States. Behind the cold front (Oklahoma, Kansas, Missouri, and Arkansas) we see that the stratus clouds are colored green-yellow, however, the stratus clouds ahead of the cold front (Texas, Louisiana, Mississippi, and Alabama) are light blue. The question is why?

While stratus clouds often have strong contributions from the red and green bands (indicating thick, water clouds), the relative blue contribution from the Channel 13 Clean-IR Brightness Temperature (10.3 um) can highlight the relative temperature differences of stratus clouds. See the abbreviated RGB recipe for the Nighttime Microphysics RGB below.

To see this effect for yourself, you can compare the Nighttime Microphysics RGB to the Clean-IR Brightness Temperature imagery using the slider tool below. Note the position of the cold front (via the surface observations), where the colors of the stratus clouds change in the Nighttime Microphysics RGB, and the higher/lower Clean-IR Brightness Temperatures ahead/behind the cold front.

Kevin Thiel, OU CIWRO

Posts navigation

← Older Entries
  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 2,273 other followers

  • Keyword Search

  • RSS Satellite Liaison Blog

    • GOES-18 Captures Fires and Severe Thunderstorms 05/12/2022
    • First Light GOES-18 Imagery 05/12/2022
    • 8 May 2022 Blowing Dust 05/09/2022
    • Oklahoma Supercells at Sunset from GOES-16 04/26/2022
    • Dense Fog in Ohio Viewed from the Nighttime Microphysics RGB 04/22/2022
    • Thunderstorms Initiating Overnight in Kansas and Oklahoma 04/13/2022
    • Early April 2022 Blowing Dust 04/11/2022
    • GOES-East and VIIRS Capture Frontal Passage 04/07/2022
    • Bolt from the Blue: How Satellites Tell the Tale of Aircraft Dodging Developing Thunderstorms 04/06/2022
    • Differences in Stratus Cloud Color via the Nighttime Microphysics RGB 04/06/2022
  • May 2022
    S M T W T F S
    1234567
    891011121314
    15161718192021
    22232425262728
    293031  
    « Apr    
  • Archives

    • May 2022 (3)
    • April 2022 (7)
    • March 2022 (5)
    • February 2022 (3)
    • January 2022 (4)
    • December 2021 (2)
    • November 2021 (2)
    • October 2021 (2)
    • September 2021 (2)
    • August 2021 (3)
    • June 2021 (2)
    • May 2021 (1)
    • April 2021 (3)
    • March 2021 (5)
    • February 2021 (1)
    • January 2021 (4)
    • December 2020 (5)
    • November 2020 (1)
    • October 2020 (5)
    • September 2020 (1)
    • August 2020 (4)
    • June 2020 (4)
    • May 2020 (4)
    • April 2020 (8)
    • March 2020 (9)
    • February 2020 (6)
    • January 2020 (4)
    • December 2019 (3)
    • November 2019 (1)
    • October 2019 (5)
    • September 2019 (2)
    • August 2019 (5)
    • July 2019 (2)
    • June 2019 (1)
    • May 2019 (5)
    • April 2019 (7)
    • March 2019 (4)
    • February 2019 (4)
    • January 2019 (3)
    • December 2018 (2)
    • November 2018 (7)
    • October 2018 (3)
    • September 2018 (3)
    • August 2018 (1)
    • July 2018 (8)
    • June 2018 (5)
    • May 2018 (4)
    • April 2018 (5)
    • March 2018 (7)
    • February 2018 (5)
    • January 2018 (4)
    • December 2017 (4)
    • November 2017 (7)
    • October 2017 (9)
    • September 2017 (6)
    • August 2017 (12)
    • July 2017 (5)
    • June 2017 (9)
    • May 2017 (8)
    • April 2017 (17)
    • March 2017 (20)
    • October 2016 (1)
    • August 2016 (1)
    • July 2016 (1)
    • May 2016 (1)
    • March 2016 (2)
    • February 2016 (1)
    • October 2015 (1)
    • August 2015 (1)
    • July 2015 (1)
    • April 2015 (3)
    • March 2015 (3)
    • February 2015 (1)
    • December 2014 (1)
    • October 2014 (1)
    • September 2014 (3)
    • August 2014 (4)
    • July 2014 (1)
    • June 2014 (4)
    • May 2014 (9)
    • April 2014 (5)
    • March 2014 (3)
    • February 2014 (1)
    • January 2014 (1)
    • December 2013 (1)
    • November 2013 (1)
    • October 2013 (1)
    • June 2013 (2)
    • May 2013 (3)
    • April 2013 (1)
    • March 2013 (1)
    • February 2013 (2)
    • January 2013 (1)
    • December 2012 (1)
    • November 2012 (4)
    • October 2012 (10)
    • September 2012 (2)
    • August 2012 (1)
  • Categories

  • Tags

    #G16 #GOES16 Air Mass Product Cloud Top Cooling CTC East Coast Storm EWP GOES-16 Heavy Rain Hurricane Sandy HWT Large Ocean Storm Mid-Atlantic Weather MODIS New England Weather North Atlantic ocean prediction center perfect storm satellite severe severe weather SPC srsor Texas VIIRS
Blog at WordPress.com.
Satellite Liaison Blog
Blog at WordPress.com.
  • Follow Following
    • Satellite Liaison Blog
    • Join 2,273 other followers
    • Already have a WordPress.com account? Log in now.
    • Satellite Liaison Blog
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...